Binary to Decimal
- Using the weight associated with each digit position in a binary number.
- Apply the weight to each digit starting from LSB.
Convert 1101012 to decimal.
1101012 | = 1x25 + 1x24 + 0x23 + 1x22 + 0x21 + 1x20 |
= 1x32 + 1x16 + 0x8 + 1x4 + 0x2 + 1x1 | |
= 32 + 16 + 0 + 4+ 0 + 1 | |
= 53 |
1101012 = 5310
Convert 11101012 to decimal.
11101012 | =1x26 + 1x25 + 1x24 + 0x23 + 1x22 + 0x21 + 1x20 |
= 1x64 + 1x32 + 1x16 + 0x8 + 1x4 + 0x2 + 1x1 | |
= 64 + 32 + 16 + 0 + 4+ 0 + 1 | |
= 117 |
11101012 = 11710
- Knowing the weight of each bit in a binary number makes it simple to add them together to get its decimal equivalent.
Convert 1101012 to decimal.
Weight | 32 | 16 | 8 | 4 | 2 | 1 |
Digits | 1 | 1 | 0 | 1 | 0 | 1 |
Sum | 32 | 16 | 0 | 4 | 0 | 1 = 5310 |
Convert 11101012 to decimal.
Weight | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
Digits | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
Sum | 64 | 32 | 16 | 0 | 4 | 0 | 1 = 11710 |
Related topics:
Binary to Decimal Conversion | Binary to Hexadecimal Conversion | Hexadecimal to Binary Conversion | Decimal to Hexadecimal Conversion | Hexadecimal to Decimal Conversion
List of topics: Microcomputer
No comments:
Post a Comment